Extremal characteristics of conditional models

نویسندگان

چکیده

Abstract Conditionally specified models are often used to describe complex multivariate data. Such assume implicit structures on the extremes. So far, no methodology exists for calculating extremal characteristics of conditional since copula and marginals not expressed in closed forms. We consider bivariate that specify distribution X Y . provide tools quantify assumptions extremes this class models. In particular, these allow us approximate tail coefficient asymptotic independence $$\eta$$ η apply methods a widely model wave height period. Moreover, we introduce new condition parameter space Heffernan Tawn (Journal Royal Statistical Society: Series B (Methodology) 66(3), 497-547, 2004), prove does capture , when $$\eta <1$$ < 1

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustmen...

متن کامل

Inference for Extremal Conditional Quantile Models (extreme Value Inference for Quantile Regression)

Quantile regression is a basic tool for estimation of conditional quantiles of a response variable given a vector of regressors. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. Quantile regression applied to the tails, or simply extremal quantile regression is of interest in numerous economic and financial appli...

متن کامل

Evolution models with extremal dynamics

The random-neighbor version of the Bak-Sneppen biological evolution model is reproduced, along with an analogous model of random replicators, the latter eventually experiencing topology changes. In the absence of topology changes, both types of models self-organize to a critical state. Species extinctions in the replicator system degenerates the self-organization to a random walk, as does vanis...

متن کامل

Stochastic Volatility Models: Extremal Behavior

Stochastic volatility determines, as a rule, the extreme risk in price fluctuations. We review some of the most important stochastic volatility models concerning their extreme behaviour. This includes the tail behaviour as well as the cluster possibilities of such models. The following pattern is common for discretetime and continuous-time models. In linear models the volatility inherits the ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Extremes

سال: 2022

ISSN: ['1386-1999', '1572-915X']

DOI: https://doi.org/10.1007/s10687-022-00453-7